Search by Algolia
Add InstantSearch and Autocomplete to your search experience in just 5 minutes
product

Add InstantSearch and Autocomplete to your search experience in just 5 minutes

A good starting point for building a comprehensive search experience is a straightforward app template. When crafting your application’s ...

Imogen Lovera

Senior Product Manager

Best practices of conversion-focused ecommerce website design
e-commerce

Best practices of conversion-focused ecommerce website design

The inviting ecommerce website template that balances bright colors with plenty of white space. The stylized fonts for the headers ...

Catherine Dee

Search and Discovery writer

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion
e-commerce

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion

Imagine an online shopping experience designed to reflect your unique consumer needs and preferences — a digital world shaped completely around ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

DevBit Recap: Winter 2023 — Community
engineering

DevBit Recap: Winter 2023 — Community

Winter is here for those in the northern hemisphere, with thoughts drifting toward cozy blankets and mulled wine. But before ...

Chuck Meyer

Sr. Developer Relations Engineer

How to create the highest-converting product detail pages (PDPs)
e-commerce

How to create the highest-converting product detail pages (PDPs)

What if there were a way to persuade shoppers who find your ecommerce site, ultimately making it to a product ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

Highlights from GopherCon Australia 2023
engineering

Highlights from GopherCon Australia 2023

This year a bunch of our engineers from our Sydney office attended GopherCon AU at University of Technology, Sydney, in ...

David Howden
James Kozianski

David Howden &

James Kozianski

Enhancing customer engagement: The role of conversational commerce
e-commerce

Enhancing customer engagement: The role of conversational commerce

Second only to personalization, conversational commerce has been a hot topic of conversation (pun intended) amongst retailers for the better ...

Michael Klein

Principal, Klein4Retail

Craft a unique discovery experience with AI-powered recommendations
product

Craft a unique discovery experience with AI-powered recommendations

Algolia’s Recommend complements site search and discovery. As customers browse or search your site, dynamic recommendations encourage customers to ...

Maria Lungu

Frontend Engineer

What are product detail pages and why are they critical for ecommerce success?
e-commerce

What are product detail pages and why are they critical for ecommerce success?

Winter is coming, along with a bunch of houseguests. You want to replace your battered old sofa — after all,  the ...

Catherine Dee

Search and Discovery writer

Why weights are often counterproductive in ranking
engineering

Why weights are often counterproductive in ranking

Search is a very complex problem Search is a complex problem that is hard to customize to a particular use ...

Julien Lemoine

Co-founder & former CTO at Algolia

How to increase your ecommerce conversion rate in 2024
e-commerce

How to increase your ecommerce conversion rate in 2024

2%. That’s the average conversion rate for an online store. Unless you’re performing at Amazon’s promoted products ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

How does a vector database work? A quick tutorial
ai

How does a vector database work? A quick tutorial

What’s a vector database? And how different is it than a regular-old traditional relational database? If you’re ...

Catherine Dee

Search and Discovery writer

Removing outliers for A/B search tests
engineering

Removing outliers for A/B search tests

How do you measure the success of a new feature? How do you test the impact? There are different ways ...

Christopher Hawke

Senior Software Engineer

Easily integrate Algolia into native apps with FlutterFlow
engineering

Easily integrate Algolia into native apps with FlutterFlow

Algolia's advanced search capabilities pair seamlessly with iOS or Android Apps when using FlutterFlow. App development and search design ...

Chuck Meyer

Sr. Developer Relations Engineer

Algolia's search propels 1,000s of retailers to Black Friday success
e-commerce

Algolia's search propels 1,000s of retailers to Black Friday success

In the midst of the Black Friday shopping frenzy, Algolia soared to new heights, setting new records and delivering an ...

Bernadette Nixon

Chief Executive Officer and Board Member at Algolia

Generative AI’s impact on the ecommerce industry
ai

Generative AI’s impact on the ecommerce industry

When was your last online shopping trip, and how did it go? For consumers, it’s becoming arguably tougher to ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What’s the average ecommerce conversion rate and how does yours compare?
e-commerce

What’s the average ecommerce conversion rate and how does yours compare?

Have you put your blood, sweat, and tears into perfecting your online store, only to see your conversion rates stuck ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What are AI chatbots, how do they work, and how have they impacted ecommerce?
ai

What are AI chatbots, how do they work, and how have they impacted ecommerce?

“Hello, how can I help you today?”  This has to be the most tired, but nevertheless tried-and-true ...

Catherine Dee

Search and Discovery writer

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

Personalization is set to be the key to marketing success over the coming years. Advances in technology are driving more human experiences in the consumer web space, and with a surge in digital behaviors post-pandemic, it’s vital that organizations adapt to the growing trend for personalized interactions. 

Content recommendation is one branch of the personalization family tree. At its simplest, general recommendations can be offered to users based on the popularity of content. At a more complex level, AI-powered content recommendation engines can be trained against product catalogs and customer/consumer/user data to provide more personal recommendations.

What is a content recommendation engine?

A content recommendation engine is a software solution which leverages artificial intelligence and machine learning technology to analyze data, in order to provide more personalized user experiences on a website or app. 

Advanced engines are no longer under the auspices of “big tech” companies, like Google, Amazon, Netflix or other market leaders. Now, third-party recommendation solutions enable businesses to make full use of their site’s data, providing personalized content or suggestions which achieve higher retention, consumption, or conversion.

What is content recommendation in media?

Content recommendation systems in media provide personalized content for users and subscribers based on consumer data and what’s trending. Personalized recommendations can be applied to video and music streaming sites, publishers, social media networks, and other media and news organizations to create relevant experiences that engage users and increase time spent on a site or app.

An in-store bookshop will make the point of employing staff who are sufficiently educated in literature or broadly well-read. On this basis, a sales assistant can make recommendations based on a customer’s book preferences, or point a customer standing in the “fiction” aisle to similar, more popular, and even more relevant content offerings. 

Online, algorithms replace the role of a knowledgeable sales assistant, providing real-time recommendations based on consumer data, creating a personalized experience for the consumer.

Why are media content recommendations important?

A study in the “Four Fundamental Shifts in Media & Advertising During 2020”, undertaken by DoubleVerify, found that content consumption is soaring, with 47% of consumers spending more time reading online news and an equal percentage increasing their use of video streaming services. 

The surge in content consumption presents an opportunity for digital media businesses to leverage the power of content recommendation algorithms and engines which drive user engagement and loyalty in a crowded marketplace.

How does content recommendation in media work?

Recommendations work via algorithms, typically AI-driven, which leverage user data to optimize and personalize content suggestions. The suggestions will be based on cookie data collection and metrics such as age, sex, and other demographic information, along with past viewership and search history. 

Recommendation engines’ algorithms will operate on various models, providing:

  • Popular content: popularity-based algorithms offer up content based on what’s popular or trending. If a particular piece of content (e.g. an article or video) is gaining traction, it will be offered up to other users. These algorithms ensure a trending piece of content “rides the wave” of its success, taking advantage of its popularity and building upon it for a greater reach with audiences and website or app visitors.
  • Associated content: association-based algorithms evaluate the strength of the relationship between various pieces of similar content. If an affinity exists between two news articles, for example, with most users reading both, this data can be used suggestively, prompting other users to consider the second option. These prompts exist across websites under headings like “customers also read these”, or “view more like this”.
  • Historical content: content-based algorithms look at the similarities between the types of content a user has accessed in the past to prompt present-future recommendations. With loyal and recurring users, a complex user preference profile can be established, based on likes, dislikes and consumption patterns. Classifications such as genre and format (“horror”, “tv show”) narrow down the preferences of a given user, along with time-consumption data and more. All of this data provides users with a more personalized media offering. This reduces  the complexity of their content search and discovery experiences, and enables more pertinent, valuable interactions that result in greater efficiency, engagement and retention.

The benefits of content recommendation in media

The benefits of content recommendation in media are plentiful. Here are just a few:

  • Consumer retention: A successful content recommendation engine will simulate the experience delivered by a high-performing sales assistant. Suggestions will be knowledge-driven, relevant and appeal to the specific tastes of a user. A successful suggestive path (e.g. a trail of recommendations which are acknowledged by the web viewer) will create high retention on a site or app. 

Personalized recommendations can be the difference between a  consumer engaging for two minutes or 45. Customization and personalization is embedded into the product offerings of all leading technology companies today, so having these features is necessary to compete in the modern marketplace.

  • Customer & consumer loyalty: Establishing brand loyalty requires trust. A consumer’s time is valuable and if recommendations for content are sub-par they will switch to a competitor which “knows them better”. 

With advanced content recommendation engines, a business ensures that a consumer’s time spent on their product  is meaningful and optimized, delighting them and helping to build a loyal reader or viewer.

  • More consumption & conversions: Personalized recommendations mean more conversions. On video streaming sites, such as Netflix or YouTube,  data-driven recommendations can prompt conversions to a higher-value subscription package (“if you want to watch this movie, or customize your profile, you’ll need to buy this package or tier”). 

For online news sites, whose main source of revenue comes from advertising or subscriptions, consumer engagement creates a stickier, higher-value site. This helps fuel the advertising business model, and additional recommended content, after X free pieces help drive greater subscription adoption. 

The power of personalization

To realize the power of personalization, you don’t have to look far. Content recommendations are now “the norm” on media properties and platforms and, as outlined in a Twilio Segment Report, provide a key indicator of brand success. In 2021, 60% of consumers say they will likely become repeat buyers after a personalized site experience, up from 44% in 2017. 

However, less than a quarter of businesses have adopted such solutions, meaning there is a real gap between consumer expectations of personalization and the user experience offered  by most businesses.

Third-party content recommendation engines, such as Algolia Recommend, provide a solution for businesses who want to leverage the power of an advanced recommendation engine that would put them on par with the likes of major tech leaders. 

With Algolia Recommend, developers can use a simple API to build AI-structured recommendations on a media site or app using as little as six lines of code. Closing the gap between what a consumer expects and how a site performs is crucial for businesses to retain users, build brand loyalty, and drive revenue. In a saturated media market, it’s time to get personal – and fast. 

If you’re looking to engage consumers with more personalized content, get in touch with the Algolia team or request a free demo.

About the author
Vincent Caruana

Senior Digital Marketing Manager, SEO

Recommended Articles

Powered byAlgolia Algolia Recommend

What is a product recommender (or product recommendation engine)?
product

Catherine Dee

Search and Discovery writer

What are personalized recommendations and how can they boost engagement and conversion?
ux

Catherine Dee

Search and Discovery writer

How to optimize your streaming service’s Media Discovery to help viewers find appealing titles
e-commerce

Tanya Herman

Product Manager