Search by Algolia
Add InstantSearch and Autocomplete to your search experience in just 5 minutes
product

Add InstantSearch and Autocomplete to your search experience in just 5 minutes

A good starting point for building a comprehensive search experience is a straightforward app template. When crafting your application’s ...

Imogen Lovera

Senior Product Manager

Best practices of conversion-focused ecommerce website design
e-commerce

Best practices of conversion-focused ecommerce website design

The inviting ecommerce website template that balances bright colors with plenty of white space. The stylized fonts for the headers ...

Catherine Dee

Search and Discovery writer

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion
e-commerce

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion

Imagine an online shopping experience designed to reflect your unique consumer needs and preferences — a digital world shaped completely around ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

DevBit Recap: Winter 2023 — Community
engineering

DevBit Recap: Winter 2023 — Community

Winter is here for those in the northern hemisphere, with thoughts drifting toward cozy blankets and mulled wine. But before ...

Chuck Meyer

Sr. Developer Relations Engineer

How to create the highest-converting product detail pages (PDPs)
e-commerce

How to create the highest-converting product detail pages (PDPs)

What if there were a way to persuade shoppers who find your ecommerce site, ultimately making it to a product ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

Highlights from GopherCon Australia 2023
engineering

Highlights from GopherCon Australia 2023

This year a bunch of our engineers from our Sydney office attended GopherCon AU at University of Technology, Sydney, in ...

David Howden
James Kozianski

David Howden &

James Kozianski

Enhancing customer engagement: The role of conversational commerce
e-commerce

Enhancing customer engagement: The role of conversational commerce

Second only to personalization, conversational commerce has been a hot topic of conversation (pun intended) amongst retailers for the better ...

Michael Klein

Principal, Klein4Retail

Craft a unique discovery experience with AI-powered recommendations
product

Craft a unique discovery experience with AI-powered recommendations

Algolia’s Recommend complements site search and discovery. As customers browse or search your site, dynamic recommendations encourage customers to ...

Maria Lungu

Frontend Engineer

What are product detail pages and why are they critical for ecommerce success?
e-commerce

What are product detail pages and why are they critical for ecommerce success?

Winter is coming, along with a bunch of houseguests. You want to replace your battered old sofa — after all,  the ...

Catherine Dee

Search and Discovery writer

Why weights are often counterproductive in ranking
engineering

Why weights are often counterproductive in ranking

Search is a very complex problem Search is a complex problem that is hard to customize to a particular use ...

Julien Lemoine

Co-founder & former CTO at Algolia

How to increase your ecommerce conversion rate in 2024
e-commerce

How to increase your ecommerce conversion rate in 2024

2%. That’s the average conversion rate for an online store. Unless you’re performing at Amazon’s promoted products ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

How does a vector database work? A quick tutorial
ai

How does a vector database work? A quick tutorial

What’s a vector database? And how different is it than a regular-old traditional relational database? If you’re ...

Catherine Dee

Search and Discovery writer

Removing outliers for A/B search tests
engineering

Removing outliers for A/B search tests

How do you measure the success of a new feature? How do you test the impact? There are different ways ...

Christopher Hawke

Senior Software Engineer

Easily integrate Algolia into native apps with FlutterFlow
engineering

Easily integrate Algolia into native apps with FlutterFlow

Algolia's advanced search capabilities pair seamlessly with iOS or Android Apps when using FlutterFlow. App development and search design ...

Chuck Meyer

Sr. Developer Relations Engineer

Algolia's search propels 1,000s of retailers to Black Friday success
e-commerce

Algolia's search propels 1,000s of retailers to Black Friday success

In the midst of the Black Friday shopping frenzy, Algolia soared to new heights, setting new records and delivering an ...

Bernadette Nixon

Chief Executive Officer and Board Member at Algolia

Generative AI’s impact on the ecommerce industry
ai

Generative AI’s impact on the ecommerce industry

When was your last online shopping trip, and how did it go? For consumers, it’s becoming arguably tougher to ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What’s the average ecommerce conversion rate and how does yours compare?
e-commerce

What’s the average ecommerce conversion rate and how does yours compare?

Have you put your blood, sweat, and tears into perfecting your online store, only to see your conversion rates stuck ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What are AI chatbots, how do they work, and how have they impacted ecommerce?
ai

What are AI chatbots, how do they work, and how have they impacted ecommerce?

“Hello, how can I help you today?”  This has to be the most tired, but nevertheless tried-and-true ...

Catherine Dee

Search and Discovery writer

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

In a world of artificial intelligence (AI), data serves as the foundation for machine learning (ML) models to identify trends and patterns, which it then uses to make predictions and decisions based on new, unseen data. The more data the model is trained on, the more accurate it can become in predicting outcomes or making decisions.

But just having a lot of data is not sufficient for training a good model. The saying “garbage in, garbage out” is a well-known concept in computing, indicating that flawed input data or instructions will generate flawed outputs.

Data quality concerns are frequently overlooked in ML research and education, with major textbooks focusing on the mathematical foundation of ML and using clean, organized, and pre-labeled “toy” datasets.

Despite this, implementing ML in a particular domain has to take into account that real-world data is flawed. This is a fact that any ML engineer or Data Scientist who works with productionalizing ML models is well-versed in, as most of the challenges in creating ML models that output quality results are data-related.

In this article, we will explore:

  1. Why do ML Models need a lot of data?
  2. Why is data quality important?
  3. The balance between data quantity and data quality

Why do ML Models need a lot of data?

Put simply, an ML model is a combination of a dataset and the algorithm used to train on that particular dataset. So, the same algorithm trained on different datasets will produce very different results.

An ML model does need a fair amount of examples from which it can learn. Depending on the   complexity of the problem  that they are trying to solve, machine learning models require different volumes of data, spanning from hundreds of data points for modeling a single user profile to millions of data points for language or computer vision models.

In general, the more complex the problem, the more data the model will need to learn and make accurate predictions. Additionally, if the data is noisy or contains many outliers, the model may require more data to filter out these anomalies.

When a model is trained on a limited amount of data, it may not have enough examples to accurately generalize to new data, resulting in overfitting or underfitting — basically the ML model learns the dataset “by heart” or fails to capture the underlying patterns in the data, resulting in poor performance when predictions are generated.

Why is data quality important?

Having more data is not always better, as the quality of the data is equally important. Poor quality data can negatively impact the performance of the model, even if there is a large amount of it.

The accuracy of the model’s predictions is highly dependent on the quality of the data it has been trained on. If the data is noisy, inconsistent, or contains errors, the model is likely to learn and propagate these errors, resulting in inaccurate predictions. As an example, consider a model that is trained to distinguish between pictures of cats and dogs. Having 5% of the data wrongly labeled as dogs when they are in fact cats will result in about a 5% error rate increase for that class on unseen data. Real data (be it collected or human annotated) can contain bugs and errors that may lead to uncertainty or mistakes at inference time.

To give another example: the ML architecture, data and techniques to train a model like ChatGPT have been public for a few years. However, a lot of engineering time went into producing a usable product. One key ingredient, or “secret sauce” if you will, has been the quality of the data: the curation of incorrect and duplicate data from the internet, plus the human annotated instruction/chat-like fine-tuning.

The balance between data quantity and data quality

In ML, there is often a trade-off between the quantity and quality of data. More data can lead to better performance of an ML model, but only if that data is of high quality meaning correct and diverse. On the other hand, even a small amount of high-quality data can produce a useful machine learning model, but only if the model is not too complex. For such cases, you can also use extrapolations to generate more data out of a small, quality dataset.

A few considerations to keep in mind when searching for the balance between the amount and quality of data:

  • Collecting and labeling a massive amount of data can be costly and time-consuming.
  • If the data is low quality, it may lead to a model with poor accuracy.
  • Data can be validated, cleaned and preprocessed to fix some errors like removing bad examples or filling missing values.
  • If you have a huge dataset, you don’t have to use all of it, as training a model with such a dataset is expensive. In fact, experimentation can be done — varying the dataset size to measure how much data is required to reach optimal performance.

Therefore, it is important to consider the specific task and context and determine the appropriate amount and quality of data required for building a successful machine learning model.

Where to start when collecting data for ML models

When going into data collection with the purpose of developing a ML model, start by asking yourself the following questions:

  • Is the data accurate and error free? Are we missing values or have incorrect values?
  • Is the data relevant? Is it linked to the problem we are trying to solve?
  • Is the data complete? Does it contain enough examples to train the machine learning model effectively?
  • Is the data consistent? Does it contain conflicting or contradictory information?
  • Does the data reflect a real-world scenario? 

The required volume of data depends on the complexity of the problem you are trying to solve, but if your dataset is less than a few thousand entries, a ML model might not be a good solution for your use case. Could the problem be solved using rules?

In addition, quality data is crucial for ensuring the accuracy and fairness of machine learning models. So plan to carefully curate, preprocess and validate it, thus ensuring it meets the necessary standards for the problem being solved.

At Algolia, customers can benefit from state-of-the-art AI search, while also benefiting from Algolia’s renowned performance, reliability and quality. All the AI training and management – from the selection of ML models, to their deployment, monitoring and optimization over time – is handled by Algolia.  Learn more about Algolia NeuralSearch.

About the author
Alexandra Anghel

Director of AI Engineering

linkedin

Recommended Articles

Powered byAlgolia Algolia Recommend

AI at scale: Managing ML models over time & across use cases
ai

Benoit Perrot

VP, Engineering

How to optimize an AI algorithm
ai

Rasit Abay

Senior Data Scientist

How to identify user search intent using AI and machine learning
ai

Ciprian Borodescu

AI Product Manager | On a mission to help people succeed through the use of AI